第12回七隈線建設技術専門委員会 (参考資料1)

参考資料1

2. 土砂層及び岩盤層の地下水位, 排水量の評価方法・・・・・・P18~30

3. 炭質頁岩を対象とした薬液注入試験施工結果・・・・・・・・P31~36

平成30年11月29日(木)

福岡市交通局

1. 大断面トンネル部地盤改良効果確認調査結果

地盤改良効果確認調查

(1)調査概要(評価)

人工岩盤としての機能を確認することを調査目的とする。

	強度	止水性
評価基準	地盤改良体強度(S _c)≧1MN/m²	地盤改良体の透水係数(K) < 10 ⁻⁴ (cm/s) ※地盤改良による透水係数改良値 (地盤工学会:地盤改良効果の予測と実際)
調査方法	<u>・原位置試験</u> ・PS検層(V _p) <u>・室内試験</u> ・一軸圧縮強度試験(q _u), 針貫入試験(q _u ') ・超音波パルス試験(v _p)	 ・原位置試験 ・現場透水試験(K) ※試験方法:ボーリング孔を利用した透水試験 (非定常法,注水)JGS1314-1995
評価手法	 (a)供試体一軸圧縮強度(q_u)で地盤改良体強度(S_c) を評価する (b)準岩盤強度(σ_c')で地盤改良体強度(S_c) を評価する <i>s</i>_c=σ_c ⁽=(V_p/v_p)²×q_u * 準岩盤強度: 亀裂を考慮して安全側で評価するために室内試験で 求めた圧縮強度を低減させた強度(トンネル標準示方書P46他) (c)一軸圧縮強度(q_u)と供試体P波速度(v_p)の相関 式に、原位置P波速度(V_p)を代入して地盤 改良強度(S_c)を評価する <i>s</i>_c=0.75×(V_p)² 	1回目:高圧噴射撹拌工終了後に測定 $\log K = \frac{1}{5} \sum_{i=1}^{5} \log Ki$ ※原位置透水試験実施孔⑤⑦⑧⑨①=5孔 2回目:薬液注入工終了後に測定 $\log K = \frac{1}{5} \sum_{i=1}^{5} \log Ki$ ※原位置透水試験実施孔D-1,D-2,D-3,E-1,E-2=5孔
その他	コア観察結果および孔壁観察結果も含めて人工岩盤の機能	を評価する。

5

・ 平衡水位から、人工岩盤内部にトンネル坑内と連続する大きな水みちは存在しないと思われる。

地盤改良効果確認調查

(3) 強度試験結果

(c)相関式に基づく地盤改良体強度 (崩落孔近傍)

崩落孔近傍⑤⑦⑧⑨⑪ 計5孔のデータから,崩落孔近傍地盤改良体強度(マス)について,供試体P波速度(v_p)と一軸圧縮強度(σ_c)の相関式に原位置P波速度(V_p)を代入して評価する。

一軸圧縮強度とP波速度の相関式による評価

地盤改良効果確認調查

(4)ボーリングコア

• 地盤改良体(崩落孔近傍)における未改良部の分布は限定的。

地盤改良効果確認調査

				地盤改良仰	本RQD一 覧		
(4)ホーリンクコア		GL(-m)	5	\bigcirc	8	9	1
RQD(崩落孔近傍)	🛧 崩落孔近傍	9-10	-	100	-	90	100
0* 2 2*		10-11	100	100	100	80	80
		11-12	95	70	95	100	30
× × × 5×		12-13	95	80	90	60	95
		13-14	100	0	35	100	95
		14-15	100	45	100	35	40
		15-16	90	90	75	90	100
		16-17	75	80	-	-	-
8000			※ <mark>赤字</mark> :RQD	<50%, 指算一	-軸強度q _u ′<1MF	Paを3点以上/m	含む区間
0.0	0.0	0.0	8	0.0	9	0.0	1
2.0	2.0	2.0		2.0		2.0	
4.0	4.0	4.0		4.0		4.0	
6.0	6.0	6.0		6.0		6.0	
8.0	8.0	8.0		8.0		8.0	
ξ _{10.0}	ξ 10.0	ε̃ _{10.0}		ε _{10.0}		Ę 10.0	
تق 12.0	12.0	تى 12.0		ື່ປີ 12.0		ਹੱ 12.0	
14.0	14.0	14.0		14.0		14.0	
16.0	16.0	16.0		16.0		16.0	
		18.0	RQD	18.0	RQD	18.0	
20.0	20.0	20.0		20.0		20.0	
0 20 40 60 80 100 RQD,qu>1MPa:(%)	0 20 40 60 80 100 RQD,qu>1MPa:(%)	0 20 RQI	40 60 80 100 D,qu>1MPa:(%)	0 2 R(20 40 60 80 100 QD,qu>1MPa:(%)	U 20 RQE	40 60 80 100),qu>1MPa:(%)

地盤改良効果確認調査

(5)強度試験結果

・供試体P波速度(V_p)と原位置P波速度(v_p)の関係

•

⑤⑦⑧⑨⑪計5孔のデータから(V_p/v_p)の関係性を評価。 代表値として最低値(V_p/v_p)²=0.73を採用する。

孔名		室内試験		原位词	置試験				
	コア採取 深度 (GL -m)	一軸圧縮強度 q _u (kN/m2)	P波速度 v _p (km/s)	調査深度 (GL–m)	P波速度 V _p (km/s)	$(V_p/v_p)^2$			
5	11.30-11.50	2,812	2.08	11.0-12.0	1.845	0.79			
\bigcirc	9.40-9.60	1,865	2.16	9.5-10.5	1.845	0.73			
8	11.7-11.9	2,986	2.57	11.5-12.5	2.268	0.78			
9	9.4-9.6	10,363	2.35	9.0-10.0	2.157	0.84			
1	10.5-10.7	1,501	2.53	10.0-11.0	2.366	0.87			
※同一深度の室内試験結果と原位置試験結果から算出。									

地盤改良効果確認調查

(6)まとめ

	強度	止水性
評価基準	地盤改良体強度(Sc)≧1(MN/m²)	地盤改良体の透水係数(K)< 10 ⁻⁴ (cm/s)
評価結果	(a) 一軸圧縮強度 1.498~10.363 ≧1(MN/m²)・・崩落孔近傍 (平均)3.914 (MN/m²) 1.486~17.992 ≧1(MN/m²)・・全体 (平均)5.600 (MN/m²) (b) 準岩盤強度 1.093~7.561 ≧1(MN/m²)・・崩落孔近傍 (平均)2.855 (MN/m²) 1.084~13.127 ≧1(MN/m²)・・全体 (平均)4.085(MN/m²) ※V _p /v _p =0.73(最小値)を用いた評価 (中均)3.813(MN/m²) ※V _p (最小値)を用いた評価	(a)地盤改良体透水係数(1回目) 1.24×10 ⁻⁵ ~6.26×10 ⁻⁵ < 10 ⁻⁴ (cm/s) (平均)2.53×10 ⁻⁵ (cm/s) (b)地盤改良体透水係数(2回目) 0.36×10 ⁻⁵ ~3.62×10 ⁻⁵ < 10 ⁻⁴ (cm/s) (平均)1.53×10 ⁻⁵ (cm/s)
	・地盤改良体は所定の機	後能を有していると評価できる。

2. 土砂層及び岩盤層の地下水位, 排水量の評価方法

土砂水位の評価方法

(1)予測値: (土砂水位変動量 - 降雨量)の相関から求める

土砂水位の評価方法

(4) 土砂水位の評価(観測井毎の評価)

境界値(偏差量)一覧 (偏差量=予測値-計測値)

	N-1	23E-4	N-3	N-4	S-1	S-2	S-3	S-4
レベル I	-12	-5	-16	-37	-21	-17	-14	-23
レベルⅡ	-33	-9	-43	-64	-44	-36	-22	-34
レベルⅢ	-53	-12	-71	-91	-66	-54	-30	-45

※22E-2及びNo.2-2は有意なデータの蓄積がないため境界値を設定できていないが, 試験水抜きにおいて有効なデータを得られた場合は境界値の設定を行う。 (cm)

土砂水位の評価方法

(5)観測井間の相関(ネットワーク)

22E-2N-123E-4N-3N-4S-1S-2S-3S-422E-2 ± 35 ± 46 ± 50 ± 49 ± 36 ± 40 ± 40 ± 4 N-1 -1 ± 29 ± 20 ± 84 ± 31 ± 27 ± 33 ± 5	No.2-2) ±54
22E-2 ±35 ±46 ±50 ±49 ±36 ±40 ±40 ±4 N-1 ±29 ±20 ±84 ±31 ±27 ±33 ±5	2 ± 54
N-1 ±29 ±20 ±84 ±31 ±27 ±33 ±5) +33
23E-4 ±21 ±71 ±35 ±40 ±45 ±4	2 ±37
N-3 ±96 ±36 ±32 ±43 ±5	2 ±48
N-4 ±43 ±46 ±45 ±6	€ ±28
S-1 ±33 ±36 ±3) ±42
s-2 ±15 ±2	€ ±28
S-3 ±2	5 ±30
S-4	±34
No.2-2	

ネットワーク境界値一覧(参考値) (偏差量=相関関数値-計測値)

(cm)

岩盤水頭の評価方法

(1)予測値: (岩盤部地下水頭-立坑水位)の相関から求める

岩盤水頭の評価方法

(4) 岩盤水頭評価(観測井毎の評価)

境界値(偏差量)一覧 (偏差量=予測値-計測値)

	K-1	N-3	K-2	S-2	S-4 '	No.2-1
レベル I	+37	+20	_	+22	+18	+18
レベルI	+77	+51	_	+51	+53	+41
レベルⅢ	+117	+83	_	+80	+88	+64

※No.23E-4は有意なデータの蓄積がないため境界値を設定できていないが,試験水抜きにおいて有効なデータを (CM) 得られた場合は境界値の設定を行う。

※K-2と偏差量については計測機器設置後,一定のデータを収集した上で設定する。

岩盤水頭の評価方法

(5)観測井間の相関(ネットワーク)

ネットワーク境界値一覧(参考値) (偏差量=相関関数値-計測値)

	K-1	N-3	K-2	S-2	S-4 '	No.2-1
K-1		±47	_	±49	±40	±48
N-3			_	±16	±8	±11
К-2				_	_	_
S-2					±17	±17
S-4 '						±17
No.2-1						

※K-2との偏差量については計測機器設置後,一定のデータを収集した上で設定する。

(cm)

排水量の評価方法

排水量の評価方法

(3)排水量評価

排水量境界值一覧 (水位保持状態)

(m³/h)

立坑水位(TP.m)	予測値	レベル I	レベルI	レベルⅢ
TP. 91.2m	1.8	3.3 (+1.5)	4.8 (+3.1)	6.4 (+4.6)
TP. 89.5m	3.9	5.7 (+1.7)	7.2 (+3.3)	8.8 (+4.9)
TP. 87.7m	5.6	7.5 (+1.9)	9.0 (+3.5)	10.6 (+5.0)
TP. 86.5m	6.4	8.4 (+2.0)	10.0 (±3.5)	11.6 (±5.1)
TP. 84.4m	7.8	9.9 (+2.1)	11.4 (+3.7)	13.0 (+5.2)
TP. 83.0m	8.5	10.7 (+2.2)	12.3 (+3.8)	13.8 (+5.3)

上段 : 境界値 (下段 : 偏差量)

(1) 薬液注入試験概要

1.目的

炭質頁岩を対象とした薬液注入工 に適した注入材料の選定と効果確認

2.注入材料

(1)溶液型(シリカライザー)
 ②懸濁型(Tai-Q C4000)

3.注入条件(2重管ストレーナーエ法)

①注入圧力:初期圧+1.0MPa ②注入率 :13.5%(目安)

※1 開削部薬液注入実績より注入条件を設定。 ※2 建物変位抑制により試験条件を変更する場合有。

4.調査フロー

5.調査数量

注入材料(2種類)=2ケース,6本 ※但し,調査孔1は2ケースを併用して1本とする。

6.調査場所

開削部連絡通路(炭質頁岩露頭箇所) ※調査前にカバーロック用コンクリート壁を設置する。

(3) 水押し試験結果

% : 1Lu≒1.3×10⁻⁵ (cm/s)

※:初期圧P₀=0MPaと仮定, Φ86補正なし

(4)トンネル掘削時の補助工法としての炭質頁岩への薬液注入について

地工化対策		古学的史宁化社会			
		刀子时女正16 刈束			
 (1)薬材の浸透性 溶液型/懸濁型ともに所定の圧力以下で規定量を注入でき、十分な浸透性を確認できた。 	 (1)不均質性 注入後のコア性状によれば、薬液注入による改良効果は限定的 であることから、原地盤物性値によって安定性の評価をすべき。 				
(2)透水係数 • 原地盤に比べて,透水性の顕著な改善は見られない。但し,原	<u>(2)原地盤の物性</u> •炭質頁岩の代表物性	生値(第10回専門委	員会資料)		
北盛の透水係数が築液注入の適用下限に近い。 (2)、四里広古(2)、石功病(4)、 (2)、四里広古(2)、石功病(4)、 (2)、四里広古(2)、石功病(4)、 (2)、四里広古(2)、 (2)、四里広古(2)、 (2)、四里広古(2)、 (2)、四里広古(2)、 (2)、四里広古(2)、 (2)、四里広古(2)、 (2)、	粘着力 c(kN/m²)	内部摩擦角 φ(°)	透水係数 K(cm/s)×10 ⁻⁵		
↓ (3) 限労圧刀(浸透破環抵抗性) ● 限界圧力は0.16MPa~0.32MPaである トンネル握削時には	0	33.6	0.083-1.7		
天端で約0.2MPaの水圧が作用することを鑑みると、水圧に対して十分な抵抗力を有するとは評価できない。	※1 一軸圧縮強度:qu=2c·cosφ/(1-sinφ) ※2 切羽の応力状態は一軸状態に近い				
 (4) 不均質性 ● 改良後のコアによれば、性状、換算一軸圧縮強度ともにバラッキがあり、改良効果は限定的。 	 (3)天端の安定性 切羽近傍の炭質頁岩は、ほとんど強度を有しない(※1)と 価でき、切羽や天端の安定性は期待できない。 				
	 (4)切羽の安定性 切羽に炭質頁岩が現れた場合,切羽は自立しないと評価できる。 ※3 切羽の安定性評価式=c/γD(c/γD>0.13:安定) (γ:岩盤の単位体積重量,D:トンネル直径) 				
<u>まとめ</u> 地下水圧に対する抵抗性が低く、かつ注入効果は限 第2000年には、 	<u>まとめ</u> 炭質頁岩層への 	ションジャンジョン	りであること, 掘削		
正的 (ハフツモか大さい) 。	 時にはトンイル周 トンネル天端やむ 	」辺に緩み域が生し 刀羽の安定性に不安	ることを盛みれば、 安が残る。		
主たる地下水対策工としては期待できない	主たる力学的	安定対策としては	は期待できない		

(5) コア写真(試薬・フェノール塗布後)

