

参考資料

参考-1	D 2 層の代表的な物性値	P1~P10
参考-2	D h 層の代表的な物性値	P11~P17
参考-3	静止土圧係数について	P18~P22
参考-4	大断面トンネル部の解析的検討(坑内水抜き時~再掘削時)	P23~P27
参考-5	標準トンネル~3連トンネル部の解析的検討(坑内水抜き時) …	P28~P32
参考-6	地盤改良注入材の室内試験結果まとめ	P33~P34
参考-7	リスク比較・・・・・・	P35~P38
参考-8	地盤改良工の概要・・・・・・	P39~P40

平成29年11月7日(火)

福 岡 市 交 通 局

1

1)区間毎の物性値まとめ

-		7	大断面トンネル部	ß				標準トンネル部	ß				3連トンネル部		
岩級	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角φ' (°)	透水係数K (cm/s)	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角φ' (°)	透水係数K (cm/s)	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角 φ' (°)	透水係数K (cm/s)
	No.22E-2	68,490			-	21住No.1	32,150	100 - C	100 A.C.	-	開削部No.2	29,000	-	ACT AND A DATE OF	
	試験深度(GLm)	17.25-17.75	4	-	-	試験深度(GL.m)	-	-	-	4	試験深度(GLm)	15.45-16.05	-	-	-
	No.27S-1	75,750	-	-		S-1	107,100	39.3	40.3	4.35E-06	N-4-1	88,000			
	試験深度(GLm)	16.8-17.3	-			試験深度(GL.m)	16.35-16.85	15.8-17.0	15.8-17.0	16.55-17.2	試験深度(GLm)	14.55-15.05	0.0	43.9	6.17E-05
	Bor-NW-1	176,500	33.0	30.9	7.54E-05 ^{%C2}			1000 C 1000			N-4-2	7,800		11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	試験深度(GL.m)	17.0-17.5	17.21-17.69	17.21-17.69	17.7-19.0						試験深度(GLm)	16.15-16.65	14.02-15.16	14.02-15.16	14.15-15.1
Dc2	Bor-SE-1	211,700	3.0	42.7	1.28E-05						S-4-4	69,800	-	-	6.24E-06
(頁岩)	試験深度(GL.m)	16.5-17.0	16.5-16.89	16.5-16.89	17.1-19.0						試験深度(GLm)	17.05-17.55	-	-	16.8-17.6
	Bor-SW-1	-	-		4.37E-05				1		S-3-2	71,200	10 A.S. 1		12.00
	試驗深度(GL.m)		-	· · · · · · · · · · · · · · · · · · ·	17.4-19.0						試験深度(GLm)	16.45-16.95	23.9	28.2	3.16E-05
	C-10	68,000	0.0	39.9	8.35E-07		1				S-3-3	69,500	And a second second second	A CONTRACTOR	
	試験深度(GLm)	16.55-17.05	16.35-18.0	16.35-18.0	17.0-18.0						試験深度(GL.m)	17.25-17.75	16.34-19.0	16.34-19.0	15.7-17.85
	C-11	117,300	23.2	38.0	1.01E-06		-			P	1	1 X A. A.	1.1.1.1.1.1.1.1		
	試験深度(GL.m)	16.75-17.25	16.5-17.0	16.5-17.0	17.35-18.0		1				19 (B) (P) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B				
	Bor-NE-1	28,700	34.0	33.5		N-1-1	71,500	C	- x Z		No.23E-4	67,430		-	-
	試験深度(GL.m)	16.0-16.5	16.28-16.7	16.28-16.7	1.68E-05	試験深度(GL.m)	16.05-16.55		1.00		試験深度(GL.m)	17.5	-	-	-
	Bor-NE-2	18,900	66.0	35.8		N-1-2	156,100	0.0	41.7	2.37E-05	N-2-1	15,100	1000		÷
	試験深度(GL.m)	17.0-17.5	17.0-17.72	17.0-17.72	16.7-19.0	試験深度(GL.m)	16.85-17.35				試験深度(GLm)	14.35-14.85	-		
	C-3'	-	11.4	36.9		N-1-3	293.800				N-3-1	187.900	0.0	39.8	-
	試験深度(GL.m)		16.52-17.0	16.52-17.0	-	試験深度(GLm)	17.85-18.35	15.8-18.25	15.8-18.25	16.5-18.2	試験深度(GLm)	15.45-15.95	14.7-16.2	14.7-16.2	-
	C-5	55,200	11.2	36.2	5.17E-06	S-2-2	24.800	-	-	-	S-3-1	33,700	-	-	-
Ds2	試験深度(GL.m)	16.25-16.75	15.98-18.0	15.98-18.0	17.0-18.0	試験深度(GL.m)	16.95-17.45	-	-	-	試験深度(GLm)	15.75-16.25	-	-	-
(砂岩)	C-6	28.800	11.0	35.2	1.13E-05		1				S-4-3	116,500	-	-	4.
	試験深度(GL.m)	15.85-16.35	16.0-17.0	16.0-17.0	16.7-18.0						試験深度(GLm)	16.25-16.75	-	-	
	C-7'	28,900	248.0 XD1	9.6 XD1	8.35E-07%D1	1	(1	1			1	12	1
	試験深度(GLm)	16.95-17.45	16.73-18.0	16.73-18.0	17.4-18.0				1		1				
	C-8	32,700	43.4	30.2	6.60E-06				A		10			· · · · · · · · ·	1
	試験深度(GL.m)	17.05-17.55	16.2-18.0	16.2-18.0	17.15-18.0										
	C-9	26,500	10.6	39.2	8.38E-06		(1000				
	試験深度(GL.m)	16.75-17.25	15.8-18.0	15.8-18.0	15.8-18.0										
						S-2-1	10,100				N-2-2	12,500			1
				· · · · · · · · · · · · · · · · · · ·		試験深度(GL.m)	15.95-16.45	13.3	35.2	4.23E-06	試験深度(GLm)	15.35-15.85	39.0	28,9	6.82E-06
						S-2-3	47,100				N-2-3	21,200			1.1111111
						試験深度(GL.m)	18.95-19.45	15.4-19.5	15.4-19.5	16.3-18.95	試験深度(GLm)	16.55-17.05	14.2-19.25	14.2-19.25	15.5-17.43
							STATE STATE		1 10 10		N-3-2	44 700	-	-	
Ds2											試験深度(GLm)	16.35-16.85	-	-	3.32E-06
(礫岩)	-						1. T	1			N-3-3	321,900			
	-	-									試験深度(GLm)	18.25-18.75	~	-	15.8-18.0
											S-4-1	38,600			
							1				試験深度(GLm)	15.25-15.75	0.0	43.2	2.54E-05
	-						1				S-4-2	399,300			
										·	試験深度(GLm)	15.75-16.25	15.23-17.69	15.23-17.69	15.2-16.7
									1:			and a second			

2) 大断面トンネル部の変形係数

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E₀ (kN/m ²)	粘着力c (kN/m ²)	内部摩擦角	透水係数K (cm/s)	備考
原設計	224,000	62.4	20.0	1.0E-05	I
標準 Ⅱ 型 逆解析	87,000	26.25	20.0	1.0E-05	E₀
			1 1 1 4 14		

※E₀= α E=4E ※全応力状態

①大断面トンネル部は、Ds2が優勢である。

②孔内水平載荷試験より得られた変形係数Eは、以下のグループに分類できる。 (標準トンネルII型の逆解析にて得られた変形係数Eoを基本値とする。)

Ds2: E/E₀=0.32・・・Ds2の変形係数(E)は逆解析で用いたE₀の0.3倍程度 Dc2: E/E₀=1~2・・・Dc2の変形係数(E)は逆解析で用いたE₀の0.8~2倍程度

【代表値】: E=27,400kN/m²(E/E₀=0.32) ※分布状況からDs2で得られた値から代表値を算出する。 ※安全側の検討とするため、やや値の大きい(C-5)を含まない平均値とする。

3) 大断面トンネル部の粘着力・内部摩擦角

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E₀ (kN/m ²)	粘着力c (kN/m ²)	内部摩擦角 <i>φ</i> (°)	透水係数K (cm/s)	備考
原設計	224,000	62.4	20.0	1.0E-05	-
標準 Ⅱ 型 逆解析	87,000	26.25	20.0	1.0E-05	Eo

 $\times E_0 = \alpha E = 4E$ ※全応力状態

 $i_{\neg w \downarrow \rightarrow \pm} \downarrow$, ①土被り相当の拘束圧条件下における**せん断強度(\tau = c' + \sigma \cdot tan \phi')**で評価する。

②せん断強度 τ を拘束圧 σ で割った $ia A (= \tau / \sigma)$ を評価の指標とする。

③大断面トンネル部で**優勢なDs2**では、A_{Ds2}≒0.76~1.11である。

【代表値】:粘着力 c'=11.2(kN/m²)、内部摩擦角 φ'=36.2(°) ※A_{Ds2}がやや大きいNE-2を除く平均値はA_{Ds2}=0.82となる。 そこで、その値に近いC-5を代表値とする。

〇粘着7	이다. • [신문	$#摩擦角\phi$	まとめ					※有効応力	1.50		Ds2
岩級 区分	孔名	粘着力c' (kN/m ²)	内部摩擦角 φ' (°)	拘束圧σ (kN/m ²)	せん断強度 <i>τ</i> (kN/m ²)	$\begin{array}{c} A(=\tau / \sigma) \\ (-) \end{array}$	Aの平均値 (-)	備考	1.25		
	Bor-NE-1	34.0	33.5	160	139.9	0.87		-		• 1.11	
	Bor-NE-2	66.0	35.8	170	188.6	1.11		_	向 王 1.00	代表値・0.79 ♥	
	C-3'	11.4	36.9	180	146.4	0.81		崩落影響範囲に近い	0.75	0.76	
Ds2	C-5	11.2	36.2	180	143.1	0.79	NE-2を除く 平均値0.82	代表値	町 町 町 町 1.50		
	C-6	11.0	35.2	200	152.0	0.76		-	るよう		
	C-8	43.4	30.2	180	148.2	0.82		_	≺ _{0.25}		
	C-9	10.6	39.2	170	149.4	0.88		_	0.00		
	Bor-NW-1	33.0	30.9	170	134.7	0.79		_	1.50		Dc2
	Bor-SE-1	3.0	42.7	170	159.9	0.94		-	1.25		-
	C-10	0.0	39.9	180	150.7	0.84	0.07	-			
	C-11	23.2	38.0	200	179.2	0.90		-	б Щ 1.00	• 0.94	-
厧	 衰設計	62.4	20.0	180	127.9	(0.71)	-	全応力での物性値	● 単 年 0.75	代表值; 0.79	-
標準I	I型逆解析	26.25	20.0	180	91.8	(0.51)	_	全応力での物性値	街 7 0.73		
※代表	※原設計・標準 II 型逆解析は全応力状態 ※代表値として採用したC-5において、全応力状態の(c,φ)=(18.8,17.18)から算出されるA(=τ/σ)はO.41である。 ^(ア) 4 ^(P)										

5)標準~3連トンネル部の変形係数

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E₀ (kN∕m ²)	粘着力c (kN/m ²)	内部摩擦角 <i>ϕ</i> (°)	透水係数K (cm/s)	備考
原設計	224,000	62.4	20.0	1.0E-05	-
標準 Ⅱ 型 逆解析	87,000	26.25	20.0	1.0E-05	E ₀
	$\times E_0 = \alpha E = 4E$	※全応	力状態		

①標準~3連は、Dc2 とDs2が互層である。

②孔内水平載荷試験より得られた変形係数Eは、以下のグループに分類できる。 (標準トンネルⅡ型の逆解析にて得られた変形係数Eoを基本値とする。) 1) E/E₀<0.55、2) E/E₀≑0.8~1.3、3) E/E₀>1.5

③Dsにおいて試験結果の半数程度が最も変形係数が小さいグループに属する。

【代表值】:E=27,840kN/m²(E/E₀=0.32) ※Ds2でE/E₀<0.55グループの平均値(下表赤枠内の平均値)とする。

礫

礫

礫

礫

礫

礫

礫

礫

参考-1	D2層の代表的な物性値
------	-------------

6)標準~3連トンネル部の粘着力・内部摩擦角

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E ₀ (kN/m ²)	粘着力c (kN/m ²)	内部摩擦角	透水係数K (cm/s)	備考
原設計	224,000	62.4	20.0	1.0E-05	-
標準 Ⅱ 型 逆解析	87,000	26.25	20.0	1.0E-05	E ₀
		※今点	・十字能		

①土被り相当の拘束圧条件下における**せん断強度(\tau = c' + \sigma \cdot \tan \phi')**で評価する。

②せん断強度 τ を拘束圧 σ で割った $(\epsilon - \tau / \sigma)$ を評価の指標とする。

③標準~3連トンネル部はDsとDcの互層となっている。

【代表値】: 粘着力 c'=13.3 (kN/m²)、内部摩擦角 φ'=35.2 (°) ※A_{Ds2}の平均値はA_{Ds2}=0.84である。 そこで、その値に近く、c'>0のS-2を代表値とする。

※E₀=αE=4E ※全心刀状態

〇粘着力c'・内部摩擦角 ϕ' まとめ

								※有効応力
岩種	孔名	粘着力c' (kN/m ²)	内部摩擦角 <i>ϕ</i> ' (°)	拘束圧 <i>σ</i> (kN/m ²)	せん断強度 <i>τ</i> (kN/m ²)	$\begin{array}{c} A(=\tau / \sigma) \\ (-) \end{array}$	Aの平均値 (-)	備考
	N-1	0.0	41.7	130	115.8	0.89		_
DSZ	N-3-1	0.0	39.8	160	133.3	0.83		_
	S-2	13.3	35.2	180	140.3	0.78	0.84	代表値
Ds2 (礫岩)	N-2	39.0	28.9	170	132.8	0.78		_
	S-4-1	0.0	43.2	200	187.5	0.94		_
	N-4-1	0.0	43.9	200	192.5	0.96		-
Dc2	S-3-2	23.9	28.2	170	115.1	0.68	0.91	_
	S-1	39.3	40.3	170	183.3	1.08	°	_
原	〔 設計	62.4	20.0	180	127.9	(0.71)	-	全応力での物性値
標準Ⅱ	型逆解析	26.25	20.0	180	91.8	(0.51)	-	全応力での物性値

※原設計・標準Ⅱ型逆解析は全応力状態

※代表値として採用したS-2において、全応力状態の(c, ϕ) =(64.7,8.8)から算出されるA(τ/σ)は0.51である。

8)代表物性値(D2層)に関する検討方法

調査結果を鑑み、強風化頁岩層(D2層)、炭質頁岩層(Dh)の 不均質性(ばらつき)に関して、以下の3点に着目して整理した。

A:性状のばらつき(岩種、破砕・亀裂、風化)

B:物性値のばらつき(基準値で相対化した後グルーピング、最大値、最小値)

C:空間的分布のばらつき(平面、深度、大断面部、標準トンネル~3連トンネル部)

強風化頁岩層(D2層)の物性値(代表値)一覧

	大断面トンネル部	標準~3連トンネル部
特徴	トンネル天端付近はDsが優勢に分布する。	トンネル天端付近はDsとDcの互層である。
変形係数(E)	 逆解析で使用した変形係数(E₀)を比較指標とする。 変形係数の大きさは、概ねDs<dcである。< li=""> Dsについて、E/E₀≒0.32付近に概ね分布する。 代表値:E/E₀=0.32からE=27,400kN/m² </dcである。<>	 逆解析で使用した変形係数(E₀)を比較指標とする。 変形係数の半数程度はE/E₀<0.55である。 DsでE/E₀<0.55のグループの平均はE/E₀=0.32である。 代表値:E/E₀=0.32からE=27,840kN/m²
強度定数(c',φ')	 土被り圧相当の拘束圧(σ)条件下における、せん断強度 (τ)を比較指標とする。 せん断強度は、概ねDs<dcである。< li=""> Dsについて、τ/σ=0.8付近に概ね分布する。 代表値:τ/σ=0.8から、(c'、φ')=(11.2kN/m²、36.2°) </dcである。<>	 1 土被り圧相当の拘束圧(σ)条件下における、せん断強度 (τ)を比較指標とする。 2 せん断強度は、概ねDs<dcである。< li=""> 3 Dsについて、τ/σ=0.8付近に概ね分布する。 代表値:τ/σ=0.8から、(c'、φ')=(13.3kN/m²、35.2°) </dcである。<>
透水係数(k)	 ① Dsで得られた値から代表値を選定する。 ② 透水係数は、概ね1×10⁻⁵(cm/s)程度である。 ③ リスクに応じて、最大値と最小値を代表値とする。 代表値:K=1.13×10⁻⁵(cm/s)、またはK=5.17×10⁻⁶(cm/s) 	 ① DsおよびDcで得られた値から代表値を選定する。 ② 透水係数は、概ね1×10⁻⁵(cm/s)程度である。 ③ リスクに応じて、最大値と最小値を代表値とする。 代表値:K=6.17×10⁻⁵(cm/s)、またはK=3.32×10⁻⁶(cm/s)

9)まとめ

【代表物性値(D2層)について】

・JRTT岩級区分表で分類するとS2(土砂)に相当する。

【参老】

・福岡市交通局岩級区分では、D2層をN値<50と定義しており、概ねS2(土砂)と整合する。

D2層

区間	項目	代表値	備考	
_	静止土圧係数K ₀	0.4	有効応力状態	
	変形係数E(kN/m ²)	27,400	-	
	粘着力c'(kN/m²)	11.2	有効応力状態	
大断面トンネル	内部摩擦角 <i>ϕ</i> '(°)	36.2	有効応力状態	
	透水係数K ₁ (cm/s)	1.13E-05		
	透水係数K ₂ (cm/s)	5.17E-06	リスクに応した力を採用	
	変形係数E(kN/m ²)	27,840	-	
	粘着力c'(kN/m ²)	13.3	有効応力状態	
標準~3連トンネル	内 部摩擦角�'(゜)	35.2	有効応力状態	
	透水係数K ₁ (cm/s)	6.17E-05		
	透水係数K ₂ (cm/s)	3.23E-06	リヘクに心した力を採用	

	参考		・設定した	こD2の物	性値と対	也山等級	に応じた	と標準値	直の比較		
				表8.4	地山等約	及に応じた	標準値1〕				
計算 0	章上 D	単 位 体積重量	初 期 変形係数	粘着力	内 部 摩擦角	初期 ポアソン比	弹性限界	非線形 パラケウ			
地山		γ	\mathbf{D}_0	с	φ		の破壊 接近度	17.	備考		
等	被	(kN/m ³)	(kN/m ²)	(kN/m ²)	(")	νο	Rei.	n			
	\mathbf{S}_1	16	20×10^{3}	20	30	0.35	1.0	2	N值10~30相当		
亡少	S_2	18	$50 imes10^3$	20	35	0.35	1.0	2	N値 30~50 相当		
	S_3	20	100×10^{3}	20	40	0.35	1.0	2	N 値 50 以上相当		
	Rı	19	50×10^{3}	70	25	0.30	0.3	4	軟岩、中硬岩:Ⅰ _{№1~2} 相当		
	R ₂	20	100×10^{3}	150	30	0.30	0.3	4	軟岩、中硬岩:Ⅱ、相当		
	R3	21	200×10^{3}	300	35	0.30	0.3	4	軟岩、中硬岩:Ⅲ√相当		
	Ri	22	500×10^{3}	500	40	0.30	0.3	4	中硬岩: IV、相当		
Æ	R5	23	$1,000 \times 10^{3}$	1,000	45	0.30	0.3	4	中硬岩:V、相当		
	R ₆	24	$2{ imes}10^6$	2,000	50	0.25	0.2	6	硬岩:Ⅱ _№ 相当		
	R7	25	5×10^{6}	4,000	55	0.25	0.2	6	硬岩:Ⅲ₄相当		
	Rs	26	10×10^{6}	6,000	55	0.25	0.2	6	硬岩:IV、以上相当		

「山岳トンネル設計施工標準・同解説、独立行政法人 鉄道建設・運輸施設整備支援機構」 平成23年5月、310頁

1)区間毎の物性値まとめ

c' φ':有効応力状態

		大断面トンネル部						標準トンネル部	ß		3連トンネル部				
岩級	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角 ¢'	透水係数K (cm/s)	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角 φ' (°)	透水係数K (cm/s)	孔名	変形係数E (kN/m ²)	粘着力c' (kN/m ²)	内部摩擦角 φ'	透水係数K (cm/s)
	_					S-2-4 試験深度	131,200 20.35-20.85	1.00		11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N-2-5 試験深度	107,000 20.55-21.05	0.0	33.63	1.31E-05
						S-2-5	202,600	68.7	19.65	8.56E-07	N-2-6	80,800			10000000000
			-			試験深度	21.25-21.75				試験深度	21.35-21.85	20.5-23.0	20.5-23.0	20.5-23.1
		· · · · · ·				S-2-6	29,100				N-3-4	140,100	100 Carlos 100		7.26E-06
	5 /	1				試験深度	21.95-22.45	20.3-22.6	20.3-22.6	20.4-22.5	試験深度	21.25-21.75		1.1	
	1.2		120			1		1			N-3-5	12,300	0.0	33.82	
											試験深度	21.85-22.35	1.1.1		
	· · · · · · · · · · · · · · · · · · ·					1.1	1	24			N-3-6	218,500	a 6.4		1000
											試験深度	22.35-22.85	21.3-23.5	21.3-23.5	21.3-23.5
			1							- 11	N-4-3	162,600	0.0	29.7	8.29E-07
											試験深度	19.15-19.65	19.0-19.7	19.0-19.7	19.2-19.8
Dh	· · · · · · · · · · · · · · · · · · ·					11					S-3-4	114,900	0.0	46.08	3.13E-06
Dn			1								試験深度	19.35-19.85			
		· · · · · · · · · · · · · · · · · · ·	-	1			Dis.			F.	S-3-5	187,600			
	1.000	1.	1								試験深度	19.85-20.35	1000		
								1	1 - 1		S-3-6 試験深度	148,100 20.35-20.85	19.06-20.8		
		1								1	S-4-5	33,700	1	CT 1. TH	
	1										試験深度	17.95-18.45	1.0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
										- Y	S-4-6	366,500	68.5	24.69	1.72E-05
								1			試験深度	18.45-18.95	1.0	10000	1.00
	100 million (1990)	2 1	1.	1				1	· · · · · · · · · · · · · · · · · · ·		S-4-7	95,300			
)						- D		試験深度	18.95-19.45	17.69-19.55	17.69-19.55	17.8-20.1

2)標準~3連トンネル部の変形係数

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E ₀ (kN/m ²)	粘着力c (kN/m ²)	内部摩擦角	透水係数K (cm/s)	備考
原設計	-	-	-	-	-
標準 Ⅱ 型 逆解析	58,000	17.5	20.0	1.0E-05	Eo
		ッ스는			

 $\times E_0 = \alpha E = 4E$

※全応力状態

O変形係数Eまとめ

	Dh	
孔名	変形係数E (kN∕m ²)	E/E0
S-2-6	29,100	0.50
S-4-5	33,700	0.58
N-2-6	80,800	1.39
S-4-7	95,300	1.64
N-2-5	107,000	1.84
S-3-4	114,900	1.98
S-2-4	131,200	2.26
N-3-4	140,100	2.42
S-3-6	148,100	2.55
N-4-3	162,600	2.80
S-3-5	187,600	3.23
S-2-5	202,600	3.49
N-3-6	218,500	3.77
S-4-6	366,500	6.32

〇変形係数Eの分布

①Dh層の変形係数Eは100,000kN/m²付近に分布する。

【代表値】: E=80,800kN/m² (E/E₀=1.39) ※100,000kN/m²付近のグループで最も小さいN-2-6の値とする。

3)標準~3連トンネル部の粘着力・内部摩擦角

○原設計・標準Ⅱ型逆解析に用いた物性値

	変形係数E₀ (kN/m²)	粘着力c (kN/m ²)	内部摩擦角	透水係数K (cm/s)	備考				
原設計	_	-	-	_	Ι				
標準 Ⅱ 型 逆解析	58,000	17.5	20.0	1.0E-05	E ₀				

 $\times E_0 = \alpha E = 4E$

①土被り相当の拘束圧条件下における**せん断強度(\tau = c' + \sigma \cdot tan d')**で評価する。

②せん断強度 τ を拘束圧 σ で割った ia A (= τ/σ) を評価の 指標とする。

③コア性状より、粘着力cを見込むことはできないと考え、c'=O(kN/m²)を基本とする。 (参考) 切羽安定性は、トンネル径(D)、土被り比(H/D)の大きさによらず、 c/(γ・D)の値として0.13付近に安定と崩壊の境界がある(真下ら.1994)。 ※c:粘着力(kN/m²) γ :単位体積重量(kN/m³) D:トンネル径(m)

→標準II型先進導坑掘削時には層厚2mのDhが出現し、切羽が自立しなかった。 そこで、c / (γ ・D) <0.13となるcを求めると、c<5.2 (kN/m²) \Rightarrow O (kN/m²)

【代表値】:粘着力 c'=0.0(kN/m²)、内部摩擦角 d'=33.6(°) ※ øが大きめのS-3-4を除いたc=0kN/m²のグループにおいて、Aの平均値は0.64

5)代表物性値(Dh層)に関する検討方法

調査結果を鑑み、強風化頁岩層(D2層)、炭質頁岩層(Dh)の 不均質性(ばらつき)に関して、以下の3点に着目して整理した。

A:性状のばらつき(岩種、破砕・亀裂、風化)

B:物性値のばらつき(基準値で相対化した後グルーピング、最大値、最小値)

C:空間的分布のばらつき(平面、深度、大断面部、標準トンネル~3連トンネル部)

炭質頁岩層(Dh層)の物性値(代表値)一覧

	大断面トンネル部	標準~3連トンネル部
特徴	層としては分布しない。	標準Ⅱ型~3連トンネル部に面的に分布する。 D2層の下位に、層厚0.5m~2.5mで分布する。
変形係数(E)	設定なし	 ② ①の範囲に属する変形係数で最小値を代表値とする。 〇(1)の範囲に属する変形係数で最小値を代表値とする。 代表値:E=80,800kN/m²
強度定数(c',φ')	設定なし	 1 土被り圧相当の拘束圧(σ)条件下における、せん断強度 (τ)を比較指標とする。 2 3連トンネル中央坑の掘削実績やボーリングコアの性状から粘着力(c)は見込めない。 3 c=0のグループにおける、τ/σ≒0.67を代表値とする。 代表値: τ/σ≒0.67から、(c'、φ')=(0kN/m²、33.6°)
透水係数(k)	設定なし	 透水係数は、概ね2×10⁻⁵(cm/s)以下である。 リスクに応じて、最大値と最小値を代表値とする。 代表値:K=1.72×10⁻⁵(cm/s)、またはK=8.29×10⁻⁷(cm/s)

6)まとめ

【代表物性値(Dh層)について】

【参考】

・JRTT岩級区分表で分類するとS2(土砂)に相当する。

ただし、代表物性値の粘着力c=Oであり、S2(土砂)より岩級が低い可能性がある。

Dh層

区間	項目	代表値	備考		
	変形係数E(kN/m ²)	80,800	_		
	粘着力c'(kN/m²)	0.0	有効応力状態		
標準~3連トンネル	内部摩擦角 <i>ϕ</i> '(゜)	33.6	有効応力状態		
	透水係数K ₁ (cm/s)	1.72E-05			
	透水係数K2(cm/s)	8.29E-07	リヘラールした力を採用		

_			-	衣-8.4	地田寺和	及に心した	標準個"			
計算上 の 地山 葉 49		単 位 体積重量	羊 位 初 期 積重量 変形係数	粘着力	内 部 摩擦角	初期 ポ7ソン比	弹性限界	非線形 バラトタ	/45 ±2,	
		γ	\mathbf{D}_0	с	φ		の破壊 接近度	12.	Uni -5	
÷	NYX.	(kN/m ³)	(kN/m ²)	(kN/m^2)	(")	νo	REI.	n		
	\mathbf{S}_1	16	20×10^{3}	20	30	0.35	1.0	2	N值10~30相当	
上砂	S_2	18	50×10^{3}	20	35	0.35	1.0	2	N值30~50相当	
	\mathbf{S}_3	20	100×10^{3}	20	40	0.35	1.0	2	N值50以上相当	
	Rı	19	$50 imes 10^3$	70	25	0.30	0.3	4	軟岩、中硬岩: Ⅰ _{~1~2} 相当	
	R ₂	20	100×10^{3}	150	30	0.30	0.3	4	軟岩、中硬岩:Ⅱ、相当	
	R3	21	$200 imes 10^3$	300	35	0.30	0.3	4	軟岩、中硬岩:Ⅲ ₄ 相当	
岩	Rı	22	500×10^{3}	500	40	0.30	0.3	4	中硬岩: Ⅳ、相当	
種	R5	23	$1,000 \times 10^{3}$	1,000	45	0.30	0.3	4	中硬岩:V、相当	
	R ₆	24	$2{ imes}10^6$	2,000	50	0.25	0.2	6	硬岩:Ⅱ、相当	
	R7	25	5×10^{6}	4,000	55	0.25	0.2	6	硬岩:Ⅲ,相当	
	Rs	26	10×10^{6}	6,000	55	0.25	0.2	6	硬岩:IV、以上相当	

「山岳トンネル設計施工標準・同解説、独立行政法人 鉄道建設・運輸施設整備支援機構」 平成23年5月、310頁

1) K_o圧密試験の結果

<u>Ko</u>圧密試験結果

孔名	地層	K ₀	土被りH(m)		
N-2	博多粘土層	0.26	13.5		
S-1	博多粘土層	博多粘土層 0.35			
N-1	博多粘土層	0.29	15.3		
N-1	D2	0.38	17.0		

2)静止土圧係数の推定

浸透流ー力学連成解析の実施にあたり、

D2層の側圧係数=0.40(有効応力状態)とする。

静止土圧係数 (K_0) の推定値

	出典	K₀推定式	推定值	全応力/有効応力	備考	
(1)	調査結果に基づく 推定式	K ₀ =0.0211H	0.37	有効応力	K _o 圧密試験 から推定	
(2)	K ₀ 圧密試験(D2)	-	0.38	有効応力	Ko圧密試験值	
(3)	Jaky	$K_0 = 1 - \sin \phi'$	0.41	有効応力	強度定数	
(4)	Brooker–Ireland	$K_0 = 0.95 - \sin \phi'$	0.36	有効応力	から推定	

H:土被り(m)、大断面部D2深度≒17.5mで推定値を算出

Φ':調査結果に基づき設定したDs2の代表値=36.2°

有効応力状態での静止土圧係数(K₀)は、K₀=0.36~0.41と推定される。

側圧係数の推定値(参考値)

	出典	K _o 推定式	推定值	全応力/有効応力	備考
(5)	JRTT	K ₀ =0.25+0.015H	0.51	全応力	土被りから推定
(6)	NEXCO	K ₀ =0.25+0.01H	0.43	全応力	土被りから推定
(7)	Hook	K ₀ =v/(1-v)	0.49	-	弾性論から推定

H:土被り(m)、大断面部D2深度≒17.5mで推定値を算出 v:ポアソン比、v=0.33と仮定して推定値を算出

※側圧係数は、地層毎に設定することを予定している

参考-4 大断面トンネル部の解析的検討 (坑内水抜き時~再掘削時)

※排水途中で安全率が低くなる可能性があり、排水スピードの検討とともに今後分析する。 ※今後、解析モデルの検証やリスクケース解析などを通じて検討精度を向上させる。

参考-5 標準トンネル~3連トンネル部の解析的検討 (坑内水抜き時)

坑内水抜き前 坑内水抜き後 地 山の評価 D2 D2 Dh 設計基準強度 発生応力 設計基準強度 発生応力 支保の評価 吹付けコンクリート 吹付けコンクリート 2.6 < < 36.0 1.6 36.0 発生応力 降伏強度 発生応力 降伏強度 錮製支保工 鋼製支保工 119.6 245.0 < 82.4 < 245.0 (N/mm^2) (N/mm^2) • 現在はこの状態で1年近く経過しているが、各種計 トンネル周辺の局所安全率が回復する。 • 測結果に大きな変化はなく安定している。 吹付けコンクリートおよび鋼製支保工に生じる応力 ٠ は増加するが、設計基準強度および降伏強度以下 である。 ※代表物性値を用いた解析結果である。なお、長尺鋼管先受工等の補助工法の効果を見込まずに試算したケースであることに留意する必要がある。 ※排水途中で安全率が低くなる可能性があり、排水スピードの検討とともに今後分析する。 ※今後、解析モデルの検証やリスクケース解析などを通じて検討精度を向上させる。

※今後、解析モデルの検証やリスクケース解析などを通じて検討精度を向上させる。

⑥3連トンネルⅡ型

			坊	「内水抜き	jij			坑内水抜き後						
1 () 	地山の評価		D2					D2						
	支保		吹付けコンクリート	発生応力		設計基準強度			吹付けコンクリート	発生応力		設計基準強度		
				1.9	<	36.0				2.5	<	36.0		
	の 評				细制支促工	発生応力 降		降伏強度			御制士伊士	発生応力		降伏強度
1	価		—————————————————————————————————————	1 2 5.1	<	245.0			鋼製支保工	164.3	<	245.0		
						(N/m	nm²)					(N/mm²)		
		 現在はこの状態で1年近く経過しているが、各種計 測結果に大きな変化はなく安定している。 						•	トンネル周辺の局所 吹付けコンクリートま は増加するが、設計 である。	i安全率が回 Sよび鋼製S 基準強度お	回復す 支保二 Sよひ	└る。 ⊑に生じる応力 ×降伏強度以下		
※代表物性 ※排水途中 ※今後、解	くめる。 代表物性値を用いた解析結果である。なお,長尺鋼管先受工等の補助工法の効果を見込まずに試算したケースであることに留意する必要がある。 排水途中で安全率が低くなる可能性があり、排水スピードの検討とともに今後分析する。 今後、解析モデルの検証やリスクケース解析などを通じて検討精度を向上させる。													

参考-6 地盤改良注入材の室内試験結果まとめ

一次元浸透	試験結果】														
+	# 屠久	細粒分Fc GF		GR比	比による 浸透距離による浸透性の判定]					
4	也借有	(%	6)	浸透性の判定		懸濁型		溶液型		系溶液型					
緩 (F	い砂層 c多い)	砂層 多い) 砂層 かない) 上部層 ls2) 20.7 ^{※1} 11.1 26.7 ^{※2}		×		×		0		0		・細粒分が多い緩い砂層には、懸濁型注入材は			
緩 (Fc	い砂層 。少ない)			Δ		0		0	-			・博多粘土上部層に浸透可能な薬材はない。			
博多精	佔土上部層 dHs2)			×		×		×		×					
		※1 : 有機 ※2 : 有機	送系溶液型:: 送系溶液型::	25% 23%	-						-				
 -軸圧縮試	 験】														
	₩屆名		細粒分F	c 注入材		一軸圧縮強	〕 度σ7	一軸圧縮強度	ξσ28		※設計基準強 (Fs=2)	≜度への採用に際しては、概ね安全率(Fs)を2 程度見込む必要がある。			
			(%)		A:王材多 B:王材·	▶ (MN/m	1 ²)	(MN/m ²))						
	緩い砂層① (Fc多)		21.5		 懸濁型B	6.21	8.49 6.21								
	緩い砂層	§ (2)			懸濁型A	7.81	7.81								
	(Fc中) 緩い砂層③ (Fc少) 博多粘土上部層		18.0		懸濁型B	5.88	5.88		7.34		 ・ 密海空注入材による 成長強度(至内試験、 の 7) は、 2.32MN/m²~8.49MN/m²であった。 				
			111		懸濁型A	5.91	5.91								
			11.1		懸濁型B	2.32		5.58							
			25.9		懸濁型A	6.08		8.84		1					
	(dHs2))	20.0		懸濁型B	4.19		4.98							
	地層名		細粒分F (%)	c	注入材	一軸圧縮強 (MN/m	〕度σ7 ²)	一軸圧縮強度 (MN/m ²	ξσ 28)						
	緩い砂層 (Fc多]①)	21.5		溶液型	0.11	-	0.12	,						
	緩い砂層 (Fc中])	18.0		溶液型	0.20		0.22			•溶液型注 0.11MP	E入材による改良強度(室内試験、σ7)は、 N/m ² ~0.38MN/m ² であった。			
	(1011) 緩い砂層③ (Fc小)		11.1		溶液型	0.31		0.32		۲					
	博多粘土上 (dHs2)	:部層)	25.9		溶液型	0.38		0.42							
	地層名	3	細粒分F (%)	c	注入材	一軸圧縮強 (MN/m	〕 (建σ1 (²)	一軸圧縮強度 (MN/m ²	度 σ7)						
	緩い砂層 <u>(</u> Fc多])	25.0		有機系溶液型	1.01		1.02			• 有機系注	主入材による改良強度(室内試験、σ7)は、			
	緩い砂層 (Fc少	雪 <mark>②</mark>)	_		有機系溶液型	1.03		1.04			1.02M	1.02MN/m ² ~1.04MN/m ² であった。			
	博多粘土上 (dHs2	粘土上部層 (dHs2) 23.0			有機系溶液型	1.02		1.03							

想定されるリスクについて、事象毎に発生する可能性の大きさを比較したところ、有意な差はみられない。

リスクを伴う作業の項目数(頻度)の比較では、特殊シールドによる施工よりも人工岩盤掘削が優れている。

1)リスクの比較(可能性と項目)

		事象発生の可能性と項目							
변수가는 귀속은	吉舟へ行空								
	事家の程度	人工岩盤掘削		事前処理(支保工切断等))	本掘進			
		事象発生の可能性 (討議1 P6)		事象発生の可能性	リスク項目 (討議1 P8)	事象発生の可能性	リスク項目 (討議1 P8)		
	湧水(地盤の安定を保てるレベル)	高 地盤改良の効果確認や遮水壁の設 置,埋土層の水抜き等の対策を講 じるが,少量の湧水は抑制できない 可能性があるため発生確率は"高" と評価する	d	高 地盤改良の効果確認や遮水壁の設 置,埋土層の水抜き等の対策を講 じるが,少量の湧水は抑制できない 可能性があるため発生確率は"高" と評価する	d,e,f	低 密閉タイプのシールルドマシン採用 を想定しているため	C,g		
水の流入	湧水(地盤の安定を保てないレベル)	低 地盤改良の効果確認や遮水壁の 設置,埋土層の水抜き等によって 多量の湧水発生を防止する複数の 対策を講じるため,発生確率は" 低"と評価する	d	低 地盤改良の効果確認や遮水壁の 設置,埋土層の水抜き等によって 多量の湧水発生を防止する複数の 対策を講じるため,発生確率は" 低"と評価する	d,e,f	低 「同上)	g		
土地の法に	肌落ち・小崩落	中 適切な補助工法を選定するものの、 切羽の状況によっては一定量の肌 落ちが発生する可能性がある	d	中 鋼管推進や引抜き時に密閉性を保 つことが困難となるタイミングがある ため、鋼管内で小崩落が発生する 可能性がある	d	低 (同上)	g		
	陥没	低 地盤改良の効果確認や遮水壁設置, 適切な補助工法の採用,計測管理 を実施するため,発生確率は"低"と 評価する	d	低 地盤改良の効果確認や遮水壁設置, 適切な対策工法を採用するため, 発生確率は"低"と評価する	d	低	g		
地表面沈下や地下埋設物への影響	路面の段差発生	低 事前の変位解析結果を踏まえ,有 害な影響が発生しないよう,適切な 補助工法を採用するため発生確率 は"低"と評価する	b	低 事前の変位解析結果を踏まえ,有 害な影響が発生しないよう,適切な 対策工法を採用するため発生確率 は"低"と評価する	b	低 (同上	b		
	埋設物の破損	低 〔 〕	b	低 〔	b	低 (同上)	b		
	建物の傾斜	低 〔	а	低 〔	а	低 (同上)	a		
周辺建物への影響		低 [同上	а	低 〔	а	低 〔	a		
	 建物の倒壊	低 〔	a	低 〔 低	a	低 〔	a		

2) リスクの比較(作業内容と頻度,影響範囲)

リスクを伴う作業内容と頻度、影響範囲の比較

	非開削工法						
	人工岩盤掘削	特殊シールド					
概要図	長尺鋼管先受工 地山 ・ 第二 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	FC鋼管先受工 上必要な空間が確然 定さい場合、上部を払 期間する必要がある 充填・改良 た填・改良 歳ボルト 地山 支健物確認用鋼管					
想定されるリスク	掘削時の水や土砂の流入(d)	 ①トンネル支保工の切断(d,e) ②パイプルーフ施工時に水や土砂の流入(f) ③シールド掘進を停止した障害物撤去(g) 					
リスクを伴う作業 の内容	大断面部の導坑掘削時に設置した支保工を撤去し、切拡げ 断面の支保工を設置する。	①②導坑掘削施工済の全区間(約10m)の支保工(13基)等が支障する ため、これを切断撤去するための鋼管を推進し、13基の支保工の切断撤去 を8セット(*1)計画している。また、シールド接続作業のため、上部に7本 (*2)のパ1プル-7の設置が必要となるが、これに支障する鋼製支保工の切断 撤去を計画している。 ③シールド掘削時に障害物に遭遇する頻度については算定が困難					
影響範囲	<mark>広範囲</mark> (概ねトンネル外径から上方に45°+φ/2の範囲)	①②支保工切断を行うための鋼管推進時の影響範囲は局所的であるが、支保工が連続的に切断されることになるため、支保工全体が沈下した場合の影響範囲は広範囲(概ねトンネル外径から上方に45°+φ/2の範囲) ③シールドを停止させ障害物を撤去する場合の影響範囲は広範囲(シールド外径から45°+φ/2の範囲)					
備考	討議資料1 P6に記載のリスク中以上の項目dを対象に整理した。 人工岩盤については、地盤改良に期待している効果が得られることが前提となる。	討議資料1 P8に記載のリスク中以上の項目d,e,f,gを対象に整理した。 特殊シールドについては、有害な沈下が発生しないよう隔壁の機能が確保されていることが前提となる。また、支保工の切断撤去が必要なため、地盤改良に期待している効果が得られることが前提となる。 ※1、※2 隔壁の設置位置や支保工の状況によってはパイプルーフや鋼管の施工本数が増える可能性がある。					

特殊シールド施工におけるステップとして、既存のトンネル支保工等の撤去が必要であるが、この際のリスクが人工岩盤掘削および特殊シールドの他のリスクと比較して大きいと考えられる

38

参考-8 地盤改良工の概要

参考-8 地盤改良工の概要

1) 地盤改良工の概要

地盤改良工法は下記のとおり。

	薬液注入工法	高圧噴射攪拌工法
工法概要	・高強度・恒久性グラウト材を浸透注入し、対象地盤の強度、止水性を改良する。	・セメント系固化材を噴射攪拌し、対象地盤の強度、止水性を改良する。
メリット	・砂地盤に対して,薬液による改良効果が期待できる。 ・玉石等があっても,改良効果が期待できる。	 ・未固結層に対して、高強度の改良が可能。 ・改良幅を大きく取れるので、比恵10号直下の改良が可能。
デメリット	・細粒分が多い土層に対しては改良効果が小さい。 ・緩んだ砂層は、LW塊や異物等が混在しており、均質な改良が可能か不明。 ・比恵10号直下に未改良部ができる。	・異物がある場合は、セメント系固化材の噴射攪拌ができず改良不足になることがある。 ・岩盤・粘土・改良体等の固結層に対しては、改良できない。
本施工における 効果確認方法	・効果確認ボーリング(針貫入試験, 孔内水平載荷試験) ・現場透水試験	 ・改良径の確認 ・効果確認ボーリング(一軸圧縮試験) ・現場透水試験

薬液注入工法の手順の例

高圧噴射攪拌工法の手順の例

